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Abstract
The size distribution of land plots is a result of land allocation processes
in the past. In the absence of regulation this is a Markov process leading
an equilibrium described by a probabilistic equation used commonly in the
insurance and financial mathematics. We support this claim by analyzing the
distribution of two plot types, garden and build-up areas, in the Czech Land
Registry pointing out the coincidence with the distribution of prime number
factors described by Dickman function in the first case.

PACS numbers: 89.65.Gh, 87.23.Ge

The distribution of commodities is an important research topic in economy—see [CC07] for an
extensive literature overview. In this paper we focus on a particular case, the allocation of land
representing a non-consumable commodity, and a way in which the distribution is reached.
Generally speaking, it results from a process of random commodity exchanges between agents
in the situation when the aggregate commodity volume is conserved; in other words, one deals
with pure trading which leads to commodity redistribution.

Models of this type were recently intensively discussed [SGG06] and are usually referred
to as kinetic exchange models. Our approach here will be different, being based on the concept
known as perpetuity. The latter is a random variable D that satisfies a stochastic fixed-point
equation, the form

D � a(D + 1), (1)

where a and D are independent random variables and the symbol � means that the two sides
of the equation have the same probability distribution; by an appropriate scaling, of course, the
value 1 in (1) can be replaced by any fixed positive number. It is supposed that the distribution
P(a) of the variable a is given and one looks for the distribution Q(D) of D.
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Equation (1) has a solution provided the variable a satisfies mean(log a) < 0 (cf [Ve79]).
It appears in the literature under various names depending on the field of application; it
is known as the Vervaat perpetuity [Ve79], stochastic affine mapping, random difference
equation, stochastic fix point equation and so on. Before proceeding further, let us remark
that the equation (1) looks innocent but it is not. The situation when a is a Bernoulli variable
is tricky; in particular, it was proved in [BR01] that the probability measure associated with
Q(D) is singularly continuous in this case.

Perpetuities themselves appear in different contexts. In the insurance and financial
mathematics, for instance, a perpetuity represents the value of a commitment to make
regular payments [GM00]. Another situation where we meet perpetuities arises in connection
with recursive algorithms such as the selection procedure Quickselect—see, e.g., [HT02] or
[MMS95], and they also describe random partitioning problems [Hu05].

Related quantities emerge, however, even in purely number-theoretic problems; in
particular, in the probabilistic number theory they describe the largest factor in the prime
decomposition of a random integer—see, for instance ([DG93], cor. 2) or [HT93, MV07] and
references therein. Specifically, the following claim is valid.

Proposition. Denote by p(D,X) the probability that a random integer n ∈ (1, X) has its
greatest prime factor � X1/D . The limit Q(D) = limX→∞ p(D,X) exists and coincides
with the solution of the equation D � a(D + 1) corresponding to the uniform distribution,
P(a) = 1.

Recall that the respective Q(D) is known in the number theory as the Dickman function
[BS07].

Let us pass now to our main subject which is the land plot distribution. We observe that
the present sizes of the plots result from repeated land redistribution—land purchases and
sales—in the past which represents a complex allocation process.

In an attempt to understand it within a simple model, consider first a situation where the
overall area is fixed and there are only three land owners; one can think about a small island
having just three inhabitants. We consider a discrete time and denote by Dj(n), j = 1, 2, 3,

the area of the land owned by the respective holder at time t = n assuming that the overall
area is equal to 1. Consequently, the triple {Dk(n) : k = 1, 2, 3} belongs for all n = 1, 2, . . . ,

to a three-simplex, D1(n) + D2(n) + D3(n) = 1. The land trading on the island proceeds as
follows: two holders j, k with j, k ∈ {1, 2, 3} such that j �= k are picked randomly and they
trade their lots according to the rule

Dj(n + 1) = an[Dj(n) + Dk(n)],

Dk(n + 1) = (1 − an)[Dj(n) + Dk(n)],
(2)

where an ∈ (0, 1) are independent equally distributed random numbers. (We suppose that
no land exchange involves all the three holders simultaneously.) Let us take for simplicity
j = 1 and k = 2. The simplex condition gives D1(n) + D2(n) = 1 − D3(n), thus relation (2)
implies D1(n + 1) = an(1 − D3(n)). In a steady situation the areas Dk possess identical
distributions equal to the distribution of the same random variable D; the replacement of D1

and D3 by independent copies of D then leads to the equation D � a(1 − D). A simple
substitution D → −D and a → −a leads finally to equation (1); however, the distribution of
D is, of course, invariant under such a transformation, up to a mirror image. Consequently,
the land trading on our island with three inhabitants leads formally to the lot area distribution
described by the perpetuity equation (1). Note that the constant 1 appearing in it comes from
the simplex constraint D1 + D2 + D3 = 1; it can be regarded as a manifestation of the fact that
the overall area is preserved in the trading.
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There is another argument that leads to the same equation and which can be applied to
the case of numerous land traders. The plot size D(n) owned at the instant n by a chosen one
of them can be regarded as a result of two independent actions. The first step is the sale of a
random fraction an of the property owned at time n−1, i.e. Dn−1 → anDn−1. The following
step is the purchase of a new piece of land of a size dn and adding it to that mentioned. In
combination, these actions give

Dn = anDn−1 + dn, n = 1, 2, . . . . (3)

The process is obviously of Markov type and the distribution of the plot sizes to which it
converges is given by the equation D � aD + d, where d is the random variable associated
with the acquisitions. In fact, convergence of the process is closely related to the existence
of a solution to this equation [Ve79]. The process is linked to the Dickman function in the
case that the two random variables coincide, dn = an for all n ∈ Z+, and they are identically
distributed; then (3) obviously leads to (1). From the point of land plot reallocations such an
assumption is an idealization and it is formally exact—as mentioned above—for three traders
only. It is an open question to what extent this distribution changes in situations with a larger
number of players involved.

To understand better how the Dickmann function can arise in the process, we observe that
the solution of (1) is obtained formally as the following infinite sum [Ve79],

D =
∞∑

n=1

n∏
k=1

a1a2 . . . ak, (4)

where a1, a2, . . . , ak, . . . are independent uniformly distributed random variables. On the
other hand, the Markov process (3) leads in our particular case, dk = ak , to

Dn+1 = an + anan−1 + anan−1an−2 + · · · + anan−1an−2 · · · a1D1, (5)

where D1 is the initial holding of the trader which we put equal to one. We may naturally
relabel the variables and write the right-hand side of (5) also as a1 + a1a2 + · · · ; it is crucial
that this leads to the same random variable Dn+1 since all the ak’s are independent and equally
distributed. In this form the relation between (4) and (5) is clearly seen; the question is whether
the two quantities are close to each other in the situation we are interested in5. The point is
that the number of the trading steps is of course finite and not very large. Even without big
historical disturbances we can hardly expect the free land trading to have a history longer than
roughly three centuries. Assuming that a given plot is traded once in a generation we can thus
run the process (5) realistically up to n � 10.

Luckily enough for us the convergence of (5) to (4) is rather fast: using the mentioned
relabeling we find

D − Dn+1 = a1a2a3 . . . anD̃, (6)

where D and D̃ are statistically equivalent. Denoting as usual by E(a) the mean of a, we get
therefore

E(D − Dn+1) = E(a)nE(D̃) = 2−n, (7)

since a is identically distributed in (0, 1) by assumption and E(D̃) = 1, which means that the
convergence is exponentially fast. But this is not all, one can also show that the convergence
is extremely shape robust. Indeed, take the Markov rule Dn+1 = an(Dn + 1) and denote by

5 Using a modified random variable we can rewrite (3) also in alternative forms, say, Dn = an(Dn−1 + cn−1). Some
mathematical results about convergence of such processes with specific random variables c can be found in [Du90].
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Gn(t) the probability that Dn < t . For the uniformly distributed variable a we then have

Gn+1(t) =
∫ 1

0
Gn

(
t

a
− 1

)
da, (8)

and consequently, the densities gn(t) := G′
n(t) satisfy

gn+1(t) =
∫ 1

0
gn

(
t

a
− 1

)
da

a
. (9)

The support of all these functions lies by definition of the non-negative real axis, Gn(t) =
gn(t) = 0 for t < 0. A simple substitution u = t/a − 1 then gives finally a relation between
the densities gn+1 and gn, namely

gn+1(t) =
∫ ∞

t−1
gn(u)

du

u + 1
. (10)

Let us now start with the situation far from the expected equilibrium assuming, for instance,
that all the owners have at the initial instant land plots of the same area, i.e. g1(t) = δ(t − 1);
then (10) gives

g2(t) =
{

1
2 if t ∈ [0, 2)

0 if t > 2
g3(t) =

⎧⎪⎨⎪⎩
1
2 ln 3 if t ∈ [0, 1]
1
2 ln

(
3
t

)
if t ∈ [1, 3]

0 if t > 3

and so on. It can be seen easily from (10) that the functions gn(t), n = 3, 4, . . . , have the
following properties: gn(t) = cn for t ∈ (0, 1) where cn is a constant depending on n only,
and moreover, gn(t) is decreasing for t ∈ [1, n] and gn(t) = 0 holds for t > n. Furthermore,
we have cn → e−γ as n → ∞ with γ being the Euler–Mascheroni constant—note that e−γ

is the value of the Dickman function for t ∈ (0, 1). Hence even if the original distribution
had nothing in common with the Dickman function, the densities gn(t) are form-robust and
approach rapidly such a shape. In fact, integrating further we find that the densities gn for
n > 3 are already very close to the Dickman limit g∞.

The conclusion for our model is that there is a chance to see the equilibrium situation in
the land plot distributions provided the trading goes undisturbed for at least four generations.
If this is the case it makes sense to ask about a relation between the plot distribution and
equation (1); it is clear that only an inspection of actual data can show whether such a model
assumption is good or not.

Let us thus look whether these considerations have something in common with land plot
distribution in reality. One has to be cautious, of course, when choosing which types of
plots are to be considered. Recall, for instance, that Abul-Magd tried recently to describe
the wealth distribution in the ancient Egyptian society using areas of the house found by the
excavations in Tell el-Amarna [AM02]. Their distribution exhibited a Pareto-like distribution
[Pa1897] known to describe the wealth allocation among individuals. It has an algebraic tail,
and therefore it behaves in a way different from the Vervaat perpetuity for constant P(a);
recall that the Dickman function Q(D), for instance, satisfies asymptotically the inequality
Q(D) < D−D for large D. It is not surprising, however, that this case does not fit into our
scheme, the aggregate volume being not locally conserved: upgrading a house as a result of
one’s wealth need not affect the areas of the neighboring houses.

The land plots we look for have to satisfy several criteria. As the above example suggests,
they have to be arranged in connected areas, so that the gain of a purchaser is the same as the
loss of the corresponding seller. At the same time, they must be divisible so one can sell and
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Figure 1. The probability density of the normalized garden areas (full line) is compared with the
Dickman function (dashed line). We have used areas of 4000 gardens located in the two towns.

buy parts of them. Choosing such a plot type, one can look into the land registry where the
present holdings are recorded. As we have said they are the result of repeated land purchase
and land sell done by the ancestors in the past, but we are not going to look into the history
being interested in the resulting distribution. We have to make sure, however, that the process
was not affected by the outside influences like agrarian reforms or other forms of redistribution
en gros.

One plot type suitable for our purpose is gardens in urban areas. We used the Czech
real estate cadastre concentrating on the sizes of 4000 gardens in the urban area of the towns
Rychnov nad Knčžnou and Dobruška in East Bohemia. To compare their distribution with the
perpetuity result mentioned above we need, of course, a proper normalization: we choose the
scale in which the mean size of the plot is equal to 1. The result confirms our conjecture:
the probability distribution of the garden areas coincides with the Dickman function as shown
in figure 1.

This finding can be easily understood. Gardens in urban areas are desirable properties,
and as a result, any piece of a garden is equally good for the market. This means the process (2)
goes on with the variables a and d approximately homogeneously distributed over the interval
(0, 1), so that the Dickman function gives a good fit confirming our expectation. Another
conclusion we can make without looking into a detailed history is that the overall area of
gardens in these towns did not change significantly in the course of the time.

Another suitable land plot type recorded in the cadaster which was not affected by agrarian
reforms are yards and the build-up areas. In the latter case we take into account the areas only
without paying attention to the type (number of floors, etc.) of the buildings which may be
constructed on them. The situation is somewhat different from the garden distribution case,
since now we need not restrict ourselves to the urban areas. This enables us to work with a
much larger data set; altogether we employed data about 47 000 yards and build-up areas.

The allocation process is different because it is not conservative in this case. In the course
of time a new size of build-up area or yard can be a result of merging a number of smaller
areas into a larger one, and at the same time, a larger area can come from the transformation
of another land type into the building land. To describe such a process we use again
equation (1) with the uniformly distributed variable a supposing that all changes occur with
equal probability; however, we change the variable range taking a ∈ (0, A) with A > 1 to
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Figure 2. The probability density of the normalized sizes of the yard and build-up areas (full line)
compared with the solution of equation (1) with uniformly distributed a ∈ (0, 1.52) (dashed line).
We have used the sizes of 47 000 yards and build-up areas.

take into account the fact that the build-up area can expand. The result is plotted in figure 2
and we see that choosing A = 1.52 we get an excellent fit.

It would be interesting to test the concept described here on other plot types such as
the distribution of fields or forests. For this purpose, unfortunately, the Czech land registry
is not suitable because in this case the distribution was formed not only by standard market
forces but also by processes like collectivization, etc. A brief look at the corresponding
data shows that the distributions cannot be described with the help of (1) with a symmetric
distribution P(a).
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